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Dynamical chaos has recently been shown to exist in the Gaussian approximation in quantum mechanics and
in the self-consistent mean field approach to studying the dynamics of quantum fields. In this study, we first
note that any variational approximation to the dynamics of a quantum system based on the Dirac action
principle leads to a classical Hamiltonian dynamics for the variational parameters. Since this Hamiltonian is
generically nonlinear and nonintegrable, the dynamics thus generated can be chaotic, in distinction to the exact
guantum evolution. We then restrict our attention to a system of two biguadratically coupled quantum oscil-
lators and study two variational schemes, the leading order Mr@feur canonical variablgsand Hartredsix
canonical variablgsapproximations. The chaos seen in the approximate dynamics is an artifact of the approxi-
mations: this is demonstrated by the fact that its onset occurs on the same characteristic time scale as the
breakdown of the approximations when compared to numerical solutions of the time-dependedin§ehro
equation[S1063-651X98)04301-3

PACS numbgs): 05.45:+b, 03.65.Sq, 02.30.wd

I. INTRODUCTION exactly the same model system treated in Réfs2],
namely, a system of two coupled oscillators described by the
There are many situations in quantum mechanics and fiellagrangian
theory where one hopes that one dynamical degree of free-
dom can b_e considered clasglcal or sem|cIaSS|f:aI. In L= 1A2+ 12— L (m?+e?A2)x2. (1.1)
the dynamics of the early Universe, one usually imagines
that gravitational energy can be transferred to particle pro-
duction, with the gravitational field being treated semiclassi-This system of two nonlinearly coupled oscillators arose
cally; i.e., the quantum matter fields evolve in a backgroundrom studying the problem of pair production of charged
“classical” gravitational field, the dynamics of which is in pions in a strong external electric figlfl] (quantum fluctua-
turn determined from the expectation value of the energyions of the electric field were ignoredn momentum space,
momentum tensor of the quantum field. Similarly in pair the individual modes of the pion field displayed chaotic be-
production from strong electric fields, one attempts to de-havior. The two-oscillator problem results from ignoring all
scribe the background electric field “classically” and solve but thek=0 mode for the quantum field. In the Lagrangian
for the dynamics of the quantum degrees of freedom in thig1.1), the A oscillator represents the time-dependent electro-
background field. The time dependence of the electric field isnagnetic field and the oscillator, thek=0 mode of the
governed by a Maxwell equation in which the right hand sidecharged pion field.
is the average value of the current of the produced pairs. In Treating the electromagnetid\f field classically is the
this sort of approximation of a quantum system coupled withstandard first term in a largd-expansior[6] and is related
a semiclassical degree of freedom such as a coherent electtix the classic problem treated first by Schwinfigron pair
or gravitational field, the@pproximatedynamics of the quan- production from external fields. Because such semiclassical
tum system can become chaotic. This was first described byethods are often used in initial value problems in quantum
us, and termed “semiquantum chaofl,2]. A closely re- field theory, we hope to understand the origin of the chaos by
lated result having the same cause is “semiquantal chaostonsidering a simple quantum mechanical model. To this
[3], which occurs in the time-dependent Gaussian approximust be added the important point that while accurate nu-
mation for the dynamics of quantum systems. The existencmerical solutions to the quantum mechanical problem are
of chaos in the general case of dynamical variational apavailable to test the validity of approximations, such a luxury
proaches was noted by Caurigtral.[4] who also argued that is not available in field theory.
the onset of chaos signaled the breakdown of the approxima- The semiclassical calculation is equivalent to a Gaussian
tion scheme. variational approximation to the field theofsee Ref[8] for
What happens in these dynamical approximations is thamore details and an explanation of dissipation and decoher-
the time evolution of the parameters governing the shape afnce in this approximationAs shown later, all variational
the quantum mechanical wave functiéor functiona) be-  approximations to quantum dynamics lead to classical
comes sensitive to the initial conditions. We will first presentHamiltonian dynamics for the variational parametétise
an argument as to why this behavior can occuariy varia-  Gaussian approximation is a special gaseresult due origi-
tional approximation to the quantum dynami@sg., time- nally to Kan[9]. Since the dynamics is generically nonlinear,
dependent Hartree approximatjorNext we will focus on it can be chaotic.
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We will consider two variational approximations that becomes invalid. For chaotic systems, Réf2] provides a
make two different assumptions about the fluctuations of thasimple analytic argument, but the statement is true more gen-
A oscillator. The first approximatiofieading order largé\) erally.
is the assumption that we can ign@léquantum fluctuations These results might seem to put very strong constraints on
of the A oscillator (the quantum mechanical version of the dynamical mean field approximations in quantum field
electromagnetic field This is equivalent to assuming theory, especially at strong coupling. However, the field

theoretic analog to the above problem has a very |gige
(A%X)=(A)Y(x). (1.2 mally infinite) number of degrees of freedom. For example,
in the field theoretic case, E€L.1) is a radical truncation of

The Hartree approximation includes only Gaussian fluctuathe full Lagrangian
tions of both quantum oscillators. This implies a factoriza-

tion of the expectation values as L=[(0,—ieA,)b>~ Z(ﬁuAv—ﬁyAM)z—m%Tsf’-
(A%x) = (AZ)(x). (1.3 1.9

Both of these approximations include only Gaussian ﬂuctualn the leading order larghi- approximationA is still treated

tions and are dynamicaly equivalent to the conresponding RZEE 0 " 2 TN ZCRERS 88 I SR TR T
classical Liouville equation when only Gaussian fluctuations g deg :

are allowed, with a particular initial condition implementing regarding the accuracy of mean field approximations can be

the uncertainty relation. Consequently, the same chaos di nade, two issues have to be clarified. The first has to do with
cussed above will also be found in the’classical theory. Thige fact that even though the individual trajectories of the

aspect of the Gaussian approximation we will discuss else-ourer modesg, may be chaquc and far from the exact
where[10]. solution, what really matters is the summed contribution

(i.e., the statistics of the distribution of trajectojiesd this

Our numerical results show that in the Hartree approxi- h h beni h ter. Th d point i
mation, the onset of chaos, as a function of parameters of tHgdy have a much more benign character. 1ne second point is

Hamiltonian, is marginally delayed as compared to the Iarge%elatjed t(.) the_ogs_?_th Of. chaots as tr}ethr)umbert_of degreef gf
N (semiclassicalapproximation. We find that both approxi- reedom IS varied. 1heimportance ol this question was note

mations diverge from the exact numerical simulation of theby Ford[13] but it has not been studied in any detail in the

Schradinger equation at approximately the same time. AftelJiterature. Thus, it is still an open question whether chaos in

that time, the Hartree approximation qualitatively tracks thethe mean field approximation in field theory is as serious an

general features of the exact simulation better than the Iarg%/’ig%:on as suggested by the study of lower dimensional
N approximation. By direct comparison with the exact nu- ) .

merIi%F;I solution weyalso find thgt chaos in the variational The res:hof the papl)er IS IstetthoE[Jt {Ijlls foI_Io;/_vs. IT(Sec. lD.
approximations occurs roughly on the same time scale a,[\éve prlovz € generfla rgsud at a \?arlahlona _ap_proxllma-
when these approximations diverge from the exact numerica°"S '€ :[I'Oha H‘."‘m'ston"fl"lr: ynamllc_:s_ lor dt' € vane;\tlor'l'a p."i"
solution. As is known on general grounfkl], expectation ramEte;S' en, |fn ehc. we e>_ﬂo lcitly |§|cussl; eh _an;: A
values of the full quantum systetwhich are the variational tonian dynamics for the two oscillator problem, both in the

parameters of the classical Hamiltonian dynamare insen- Ic?rge:i\tl) andrl-r|]artn:etr=.i apl)proxrlmatrl]o[\s;[r]ln S):ec.t IV IWte| 2nefﬂt)fl1
sitive to initial conditions: our results are completely consis- escribe our numerical approach 1o the exact sofution of the

tent with this fact. Our interpretation of the above results istWO coupled oscillator problem. We then compare numerical

: : simulations of the two variational approximations with the
in accord with that of Refs.4,12] who have argued that the 1<act solution of the Schdinger equation. Finally, in Sec.

chaos seen in the approximate dynamics is notafundament% we stat r conclusions and di the imolications of
feature of the full quantum dynamics but simply reflects a”’ € state our conclusions a scuss the implications o

breakdown of the approximation scheme. It was further aro4' results.
gued in Ref.[12] that the approximations are unreliable

when either the classical equations are already chaotic ofl- THE TIME-DEPENDENT VARIATIONAL PRINCIPLE
when the approximate dynamics is chaotic. To test the sec-

ond part of this statement we explored nonchaotic parametey.

:ﬁglmes Iorfthﬁ apprgxfmatée dynaT'ﬁi?Jt nop too far fronty eters by constraining the wave function to be of a particular
e onset of chagsand found essentially no improvement in form. The fact that any variational calculation of the wave

the agreement between the exact quantum and approximage, -tion will lead to a Hamiltonian dynamics for the varia-

calculations. Thus the existence of chaos is insufficient tq; -, parameters was first noted by KESi. Here we pro-
assess the accuracy of the approximations: apparently th

breakd imein t f natural ti lois th fide an alternative, compact derivation.
reakdown |me§|n erms of natural time scalgis the same The starting point for a variational calculation is Dirac’s
whether chaos is present or not.

. ; i . . .__action principle[14], which can also be used to derive the
It is strong nonlinearity rather than just chaotic dynamics P ple[14]

that leads to the breakdown of the approximations. This i%zh;cg:igaer equation as shown below. We begin by defining

hardly surprising: the Gaussian approximations are equiva-
lent to truncating a cumulant expansion at second order. If
=)
t

The Schrdinger equation can be reduced to a system of
dinary differential equations for some variational param-

the exact dynamics is strongly nonlinear, higher order cumu-

t J
2dt<‘I"i——H\I’>/(\I’|\P). 2.1
lants are generated and a second order truncation quickly at

1
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The time-dependent Schiimger equation and
Jd +o
(iE—H)W):O (2.2 h(y)=J dxP* (x;y)HP(X;y). (2.10
then follows from the variational principléS=0 along with Minimization of the action, Eq(2.6), leads to Lagrange’s
the boundary conditions| ¥ (t,))=0; &|¥(t,))=0. equations:
Minimizing the action(2.1) on a restricted variational ba-
sis for the wave function d oL oL
————=0 for i=1n. 2.1
V-, (y;(1)), J dtvrv, =1 (2.3

The equations of motion for; can be found easily using the

leads to an effective action functional defined on the variaSPecific Lagrangian defined in E(.8),
tional parametery;(t):
ah(y)

]2::1 Mij(y)yj:&—yiy (2.12

F[yi(t)]zf dt<‘Pv i%—H"Pv>, (2.9
whereMj;(y) is an antisymmetric matrix given by

where the wave function is usually given in the coordinate
representation. Extremization of the effective action via M _dm dmp M 51
oI'[y;]=0 yields the dynamical equations obeyed by the ij(y) = ay; Iy i) (213
variational parameters.

In order to show that any variational solution leads to alf the inverse ofM;; exists, the equations of motion can be
symplectic Hamiltonian dynamics for the variational param-put in a symplectic form:
eters(the case of Gaussians was considered in f&f), we

consider general trial wave functions that are completely de- : _% _q, oh(y)
termined byn time-dependent functions of the forgm(t), yi_j:1 Mij~(y) ay; (2.14
i=1,... n, and written formally as
SinceM ;! is also antisymmetrida(y) is a conserved quan-
V() =¥ (Y1), @5 gy Y ) |
Here we choose for simplicity a one-dimensional Sehro dh(y) oh oh oh
dinger equation with arbitrary potential. Note that the entire —:E _inE — i}l_:o' (2.15
time dependence of the wave functions is contained in the dt Tyt T 9y Y,
variational functionsy;(t). The Dirac form of the action is ) ) :
then given by Following Das[16], we now introduce Poisson brackets by
riyl- [ ot dxw*(x;y(t»[iE—H}\lf(x;ym) WBI=Z Ty Mty @19
: So, for example,
=f dtL(y,y), (2.6 3
{yiyi=M;~. (217
with H given by . . . .
The equations of motion can now be written in terms of these
1 d? Poisson brackets:
H——Ed—Xz‘FV(X). (27) o X
= k=3 M =3 (s
Given the above parametric form of the wave function, Y= T gy g Y ayy
L(y,y) is alwaysgiven by a function of the form (2.19
n The antisymmetry of the Poisson brackets is explicit in their
L(y,y)=>, m(y)yi—h(y), (2.8)  definition (2.17. However, they must also obey Jacobi's
=1 identity:
where iy Y Ay Yl Yoty =0,
pe | 5 (2.19
. = _ * (- . .
mi(y) f,oc dxz[\lf (6y) Ay y) which is satisfied ifM;; obeys Bianchi’'s identity:
W(xy) )} 2.9 M M Mic_, (2.20
— X; J— X; . =V. .
y i y WYk Y] i
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But Bianchi’s identity is always satisfied fdf;; of the form  also perfectly clear that the larde-limit is equivalent to
treating theA oscillator classicallyi.e., ignoring the quan-
Mij=dimj— ;. (220 tum fluctuations about the mean valueAy:.

: ingA 2\ _ _
Thus our definition of the Poisson brackets satisfies Jacobi’s The equations govern ) and(x)=G w_hen(x)—_o

. : ; X were shown to be derivabld] from the effective classical
identity, and the set of classical equations of mot{@rl8

are symplectic. Hamiltonian:
1 2 ho h o 2p2
IIl. HARTREE APPROXIMATION Heﬁ=§pA+ 2RIIGG+ 8G +§(m +e“A9)G. (3.8
AND THE LARGE- N LIMIT

We have shown that a time-dependent variational ap¥Ve \(viII show belo_vv _that usipg a Gaussian_trial wave func-
proximation always leads to a Hamiltonian dynamical sysion in Dirac’s variational principle and taking the large-
tem for the variational parameters. Since such a system #nit will lead to the same effective Hamiltoni&8.8) for the
generically nonlinear, there is a strong likelihood of chaos inévolution of the expectation values. However, if instead of
the phase space of these Hamiltonian parameters. In this sé@king the largeN limit, we setN=1, and a trial wave func-
tion we derive two different approximations for the coupledtion that is a product of Gaussians A and x, then the
oscillator problem. The first keeps Gaussian correlation§duations for the expectation values become
(Hartree approximationfor both oscillators, while the sec-

ond (largeN approximatiof ignores fluctuations in the (i) +m(x;) + €*(A%)(x;) =0, (3.9
oscillator. The second approximation has been derived pre- )
viously from a path integral approa¢f] by makingN cop- (A)+e2(x?)(A)=0. (3.10

ies of thex oscillator and then taking the lardé limit.
The model Hamiltonian that generalizes the two-oscillatorHere (A%)=(A)?+D, andD is the Gaussian quantum fluc-
problem to arN+ 1 oscillator system is tuation of theA oscillator (which also is the width of thé
wave function. In this case we will also get an effective
5 N1 PO P N ) Hamiltonian description of the dynamics, but with two more
H= EDAJF; Epi + E(m TeA )Zl xi, (3D parameters) andIl. We will compare these two approxi-
mate Hamiltonian dynamics with the numerical simulation of
where we have introduced ax+1 component oscillator the exact dynamics. o
X,; #=0,1,... N with x,=A and the otheN oscillators Our choice for the trial wave function is
labeled by the roman indicés=1,2, ... N. We show below 1 G-1
that at largeN, a Gaussian ansatz for the wave function W, (x,)=Nex ——[x—q(t)]#[X—Q(t)]v<——iH)
reproduces the exact largédimit of the quantum mechani- fi 4
cal system. AN=1, the Gaussian approximation reduces to
the well known Hartree approximation.
The operator equations of motion following from the
Hamiltonian(3.1) are

nv

+ =D OX-q(], | (3.1

} where the normalization constant is given by
X;+(m2+e?A?)x;=0, (3.2

1
N=ex;{ - ZTrIn(thG)

A+e?>, x’A=0. (3.3
1

The variational parameters are related to various expectation
Taking expectation values of these two equations we obtainalues taken with respect to the variational wave function

v,
(X)) +m2(x;) +e%(A%x;) =0, (3.9
) Qi(t):<qrv|xi|q,u>'
(A)+eX(x?A)=0. (3.5
.0
It was shown in Ref[2] that in the largeN limit, fluctuations pi(t)=— < W, |if % ‘I’U> :
of the A oscillator are suppressed byNLand the exact equa- (3.12

tions (3.4) and (3.5 are approximated by

) Gij (1) +ai (1) (1) = (W, [xix;| ¥, ),

(i) +m*(x;) +e*(A)*(x) =0, (3.6

} 20;(t) p; (1) + 4L () Gy (1) = (¥ i pj + pjxi| ¥, ).
(A)+e3(x?)(A)=0. (3.7
The equations for these expectation values are obtained by

The semiclassical fieldA) now has a time-dependent mass varying the effective action, or equivalently from Hamilton's
given by the quantum expectation val(*?). The quantum equations using the effective Hamiltonian.
oscillatorx; has a mass with time dependence controlled by The effective action for the variational parameters
(A). (This system was discussed in detail in R¢fs2].) It is p,q,G,II is
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FIG. 2. A typical computation of the maximal Lyapunov expo-
FIG. 1. Domain of integrability for the largi-approximation in ~ nents for the largéN (upper curvé and Hartree(lower curve ap-

energy and Coup”ng constant space. The phase space was Samﬂ%gximaﬁons. Parameter values for this run werel andE=5.
with ten initial conditions at eache(E) point and trajectories as-
ymptoting to positive Lyapunov exponents were searched for. At ) ) ’ )
fixed e, the region above any point denoted by the top square in the Hy :EPA“‘ 2h(IIgG+1I5D) +
figure corresponds to chaotic dynamics, i.e., in the set of trajectories
sampled there was at least one with asymptotically positive fi
Lyapunov exponent. The region below the bottom square corre- + E[m2+ e*(A’+#D)]G, (3.16
sponds to integrable dynamics.

slc’p

whereG=G;; andD=Gy.

Next we take the largét limit of Eq. (3.195 using the

same scaling argument as in determing the I&ddgéanit of

(3.13  the path integral formulatiorf2]: we let A—+NA and

pa— Pa (leaving invariante A=eA). Dividing the effective
Hamiltonian byN and keeping the leading term, we find that
=(\If IH|W,) the largeN Gaussian effective Hamiltonian is exactly the
eff v same as the effective Hamiltonian found from the leading

N

ZJMF

21 pidi+ paA—ATIIIG] - Heff} :

where TfAB]=A,,,B,, and the effective Hamiltonian,

2 o2 1 order largeN action[2]. The rescaled effective Hamiltonian
_Z —+—+ﬁTr[8G‘1 + 2T IIGI] reads

v e v Ag=HGN
5t ?(A2+GOO) ;1 (@7 +Gii). (3.14

_ 1 2 h h 2 272

= SPA+2AIEG+ st o (P4 €2A2)G,

This last equation gives the effective Hamiltonian for the

dynamics of theN+1 oscillators in the Hartree approxima- (3.17

tion. For simplicity (as was done in Refl]), we now spe-

cialize to the case(t)=p(t)=0. In this caseG andIl are  Which is in complete agreement with E.8). (Tildes de-
diagonal(in general, they are also diagonal to leading ordemoting the rescaled variables have been suppressed above.
in the 1N expansioj Since we haveN replicas of thex ~ At N=1, the Hartree approximation has two more varia-
oscillator, the diagonal condition simply means tij(t)  tional parameter® and I, compared to the largh- ap-

=G(t) g; . Inserting this condition in Eq3.14 we find proximation. These are related to the real and imaginary
parts of the width of the wave function for thf oscillator

and are obviously not incorporated in the lafdeapproxi-
mation. Because of the extra degrees of freedom incorpo-
rated in it, one might anticipate Hartree to be the better of the
N S 5, two approximations.
+ 5 [m*+e*(A"+4D)]G. 3.15 In the Hartree approximation, the Hamilton’s equations
for the expectation values are
SettingN=1 in Eq.(3.15), we find the effective Hamiltonian ) .
that controls the Hartree approximation: A=pa, Ppa=—€%HAG, (3.18

AN 1

i)

Hg‘f’gzz PA+2A(NIIGG+IIED) + o
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FIG. 3. A Poincaresection in theA, A plane fore=1 andE Mg
=0.8 for the largeN approximation. The phase space was sampled

by 256 different trajectories. FIG. 4. A Poincaresection in theG, Il plane in the largeN

) ) approximation for the same set of parameters as Fig. 3.
G=4nll;G, D=4#llpD, (3.19
The above equations can now be solved numerically.
Chaos(in the sense of nonzero Lyapunov expongetsists
for large enough values of? and for energy sufficiently
(3.20 above the ground-state energy.

. h 1 1
HGZ@—ZﬁHé— Emz— Eezh(Az—i-hD),

. f 1
p= 5D —ZﬁHZD— EezleG_ (3.21) IV. SEMIQUANTUM (GAUSSIAN) CHAOS
A. Numerical methods
In the leading order largh- approximationD =0, and there |, this section we display evidence that both the laxge-
is no equation fodlp . and Hartree approximations are chaotic for appropriate val-

For numerical work it is sometimes convenient to switchyes of the energf and the couplinge. (In Ref. [1], the

to a set of coordinates where the kinetic terms have the USU{%lrgeN approximation alone was shown to be chagfithe
canonical form. Definingpz=G and pg=D, the new dynamics of test trajectories in the above approximations
Hamiltonian is was studied using a fourth order symplectic integrafdhis
integrator was implemented using the second set of variables
HL0>:£ p2+ EpéJr Ep%Jr A iz + lz defined at the end of the last sectjp@haos was character-
2 2 2 8\ps b ized quantitatively by measuring the Lyapunov exponent for
" different initial conditions using standard techniqqi#g].
+ = [m2+e2(A2+1ip2)]p2, (3.22 In order to check whether the chaos seen in the approxi-
2 mation is of some relevance to the full quantum problem, a
numerical solution of the corresponding time-dependent
Schralinger equation is required. This was accomplished by
using second and fourth order unitary, split-operator, spectral

with the resulting equations of motion

. ) )
A=Pa, Pa=—€hApg, (323 solvers that we have recently implemented on a large parallel
) ) compute{18]. By using large gridsup to 4096< 4096) suf-
Pc=Pc. Pp=PD; (324 ficient resolution is achieved to accurately evolve the wave
function over times long enough to meaningfully compare
bG:i3—[m2+e2ﬁ(A2+hp%)], (3.25 with results from the variational approximations. .
4pg The phase space of the larjeand Hartree approxima-

tions was characterized using Poincsegtions. At relatively
Po= e zﬁzpré. (3.26 low energies an(_j quest values_ of the coupling constant
4p7 both the approximations led to integrable dynamics. How-
ever, increasing either the energy or the coupling constant
Again the equations for leading order larijeare obtained quickly led to nonintegrability. While not carrying out an
by settingpp=0 and droppingpp . The advantage of this exhaustive analysis, we did isolate parametric regions where
form is the ease in writing symplectic integrators and alsathe chaos was relatively softhe area of stochastic orbits
simplifying the form of the matrices needed to compute thewas small compared to the area occupied by regular orbits
Lyapunov exponents. and regions where the dynamics was predominantly chaotic.
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FIG. 5. Evolution of(A) for e=0.3 andE=1. This is within the parameter range for nonchaotic evolution within the approximations.
Both approximations break away from the exact evolution-éb but stay in phase at later times. The Hartree approximatirdpes better
in tracking both phase and amplitude. The curve with the smallest average amplitude corresponds to the exact quantum@yoartibn (
the one with the largest average amplitude corresponds to theNagyg@ansion ).

We also ran a large set of initial conditions to sample therameters for the trial wave functions and this we leave to the
regions in coupling constant—energy space where the afuture.

proximations were regular. This was accomplished by imple- In Fig. 1 the approximate region of regularity for the
menting a parallel code to compute the Lyapunov exponentirgeN approximation is displayed. Eacle,E) point was

for a large set of independent trajectories. sampled by ten trajectories, with the Lyapunov exponent cal-

B. Numerical results T T T T T T T

There are two separate but related questions concernin 4
the variational approximations. The first question relates to
how well they track the exact numerical calculations. We
find that the approximations break away from the exact cal-
culation on a short time scale independent of whether they
are chaotic or not. However, qualitative agreement with the
numerical results is much better in the nonchaotic case. Th|A
second question refers to the stability of the approximate
solutions as well as the exact solution. In the chaotic regime
of the approximations, the approximate evolution is sensi-
tively dependent on initial conditions whereas the exact evo- 2 LN
lution is not. After a finite time, two approximate evolutions | F
starting from almost identical initial conditions become com- N .\ ;
pletely different in the chaotic case and no longer bear any -4} i
phase relationship among themselves or to the exact solutior Lo
This is in contrast with the behavior in the integrable case.

The addition of variational parameters has two effects: it
gualitatively improves the long time behavior in both the
regular and chaotic regimes even though the break time from giG. 6. Evolution of(A) for e=1 andE=5. The approximate
the exact behavior is not affected. Secondly, there is somgyolutions are now chaotic. They break away from the quantum
evidence that the onset of chaos is delayed as more paramyvolution at timet~2 (denoted by the point 1 in the figyrand
eters are added and that the value of the maximum Lyapunqyreak away from each other at point 2~(4)_ In this case the
exponent is also decreased. However, an exhaustive studyolutions quickly dephase from each other and from the quantum
would require a systematic method of adding variational paevolution.

Large N

Hartree

15 25 35
t
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Large N

Hartree -

\ NN
//////
4 N/

t t

FIG. 7. Evolution ofG for the same parameters as Fig. 6. The FIG. 9. Evolution ofG for the same parameters as Fig. 6. The
break from the quantum evolution occurstatl (denoted by the trajectory denoted b is the quantum evolutiofrecognized also
point 1 in the figurg and the approximations break away from each by being the smoothestPoints 1 and 2 mark the breaking away of
other at point 2 {(~2). The quantum evolution is much smoother two nearby trajectories in the Hartree and laNj@&pproximations.
than the approximations: Though the Hartree approximation is not
quantitatively correct, it does not have the big excursions shown b

o Yincertainty band. Whether there is a gendrabnotonid
the largeN approximation.

tendency for this to happen as the number of degrees of

o o . freedom is further increased is an interesting speculation
culated for each. Within the uncertainties of our samplinghich needs to be explored further.

scheme the integrable and nonintegrable regions cannot be The Lyapunov exponents for the two approximations
sharply distinguished: the top set of points denotes at leagfere computed in the chaotic parameter regime. For all cases
one trajectory having an asymptotically positive Lyapunovye studied the maximal exponent in the Hartree approxima-
exponent while below the bottom set of points no such raggn was less than the corresponding exponent in the Ibirge-
jectory was ever found. The true boundary should be roughly,5oximation. A typical example of these results is given in
in the middle of these two curves. The results for the Hartreg-jy o

approximation are very similar and slightly above the inte- “poincafesections are another way to explore the domains
grability curve for largeN but the difference is of order the s integrability for the two approximations. For the “bound-

[}

L Hartree .

Large N_,- 25 b

FIG. 8. Evolution of(A) for the same parameters as Fig. 6.
Points 1 and 2 mark the breaking away of two nearby trajectories in FIG. 10. Evolution ofD for the same parameters as Fig. 6. The
the Hartree and largl- approximationgone of which is the solid quantum evolution and the Hartree approximation deviate from
line). After this time, the trajectories rapidly dephase from eacheach other at~1 and the two nearby trajectories of the Hartree
other. approximation break from each othertat 15.
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ary” regions of Fig. 1, the phase space was largely mixed,
with stochastic regions coexisting with regular regions. We
checked for random values of the parameters that the regio
below this boundary was regular. Above, it was dominantly 0.5
chaotic. It was difficult to use Poincasections for the Har-
tree approximation because more degrees of freedom mear ,|
running much longer to get acceptable statistics. We did rur
checks for a few parameter values and found results consis
tent with Fig. 1 including the fact that chaos occurred at 0.3
larger values of the parameters. For example, while the
largeN approximation had appreciably chaotic region&at 0ol
=0.8,e=0.7 the Hartree approximation was completely in-
tegrable for those values of the parametéiote that the

P(A)

energyE is different for the largeN and Hartree approxima- 0.1 1
tions sinceD andII contribute in the Hartree approxima- /

tion, but not in largeN.) For the parameter values=1 and N

E=0.8 we show two Poincarsections in Figs. 3 and 4 -5

(largeN), which are typical for values of the parameters near A

the boundaries of Fig. 1.
In order to assess the relevance of the chaos seen in the
approximations we have compared the approximate evoll?

tions with exact numerical solutions of the Scthirger . . . .
equation with Gaussian initial data. The exact evolution°NS basgd on a Dirac approach are Hamﬂtpmap and generi-
shows no hint of the sensitivity to initial conditions exhibited cally nonlinear. Therefore all such approximations can be
by the approximate dynamics. As illustrated in Figs. 5 6§:ha_10t|c: Since exppnentlal divergence of expectation values
and 7, in both the regular and chaotic regimes the approxi'—n time is ruled out in full quantum mechanics, the Lyapunov

mations quickly deviate from the exact results on a timelime associated with the approximate evolution sets a time

scale of order unity, this signaling the breakdown of thescale.beyor)d Wh'Ch. the approximation b“?a"s down. We
Gaussian approximation. have investigated this last point in two particular examples

The Lyapunov time sets a maximum time for which the (large N and Hartree for a two-dimensional potenkidind

approximations can agree with the exact quantum dynamic?.g:h. to dbe Th?Ot'C’ ar?d by ccl).rn_ﬁarlio? t:;\\gamst nu_met[l.cally
In fact, consistent with this statement we observe that th@° aned soiutions, show expiicitly that the approximations

time of breakdown of the approximations and the Lyapuno reak_down on th_e Lya_punov time scale_. W? also show that
time are of the same order. However, this should not lead"e" N nonchaotic regimes, the approximations break down

one to conclude that the accuracy dramatically improve%’etry quf";ﬁly‘ Thus the T?r:e absence 9f c?aos is not an indi-
when the approximate dynamics is integrable. Indeed, evef?ior Of the accuracy of these approximations.

in integrable parameter regimes, the breakdown time can r%— We WC:leq "’}[E’o I!Itke :0 p?;wmt out t.hat stjggesﬁons have_
main of order unity(Fig. 5. Therefore, for coupling con- 2Sch Made In The Tleratre mat semiguantum cnaos may in

stants of order unity, these approximations tend to be ratherf’lCt be areal effede.g., Ref[3] and rather more strongly in

poor. This is because significant non-Gaussian structure
forms in the exact wave functions relatively rapidly. ' '

The chaos inherent in the approximations is demonstrates
in Figs. 8, 9, and 10, for the evolution ¢A), G, andD. In
these figures we show two trajectories for each of the ap-
proximations, one corresponding to an init@k 0.5 and the
other to G=0.5001 (all other parameters held fixedThe 0.4}
deviations of these two curves are consistent with the calcu p )
lated Lyapunov exponer(vhich is of order unity and an
initial deviation of order 104.

The approximations discussed here break down wheneve
there is significant non-Gaussian structure in the actual waw 0.2k
function. As long as the coupling is of order unity this hap-
pens relatively rapidly. Examples of the numerically evalu-
ated probability densities iA are shown in Figs. 11 and 12 0.1F
for values of the parameters that correspond to integrable an
nonintegrable evolutions.

FIG. 11. The initial and finalt=100) probability densities for
with e=0.3 andE=5 (integrable case

0.3F

V. CONCLUSIONS A

The central results of this investigation may be encapsu- FIG. 12. Same as Fig. 11 with=1, E=5 (nonintegrable cage
lated succinctly: all time-dependent variational approxima-n this case the final time,= 40.
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Ref. [19]). However, these claims were not backed up byproblem are now under investigation.

careful comparisons with exact calculations. The detailed re- One way of incorporating higher order correlation func-

sults reported here, along with the fact that Gaussian apions in dynamical approximations is to consider trial wave

proximations are dynamically completely classigHD], im-  functions of the form Gaussian times polynomials. This can

ply exactly the opposite conclusigim substantial agreement be put in correspondence with the lafyeexpansion, which

with the arguments of Ref§4,12]). can be shown to lead to the same structure as higher-order
The fact that in the chaotic regime, the approximationcorrections in I\ are added. An interesting question is

signals its own breakdown has an interesting physical consavhether opening up the possibility of including higher order

guence: if the M approximation is in fact sensible then a correlations in this way will improve the long time behavior

breakdown at leading order must imply that the next-to-of the variational approach.

leading terms are becoming large on the same time scale.
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