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Chaos in time-dependent variational approximations to quantum dynamics
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Dynamical chaos has recently been shown to exist in the Gaussian approximation in quantum mechanics and
in the self-consistent mean field approach to studying the dynamics of quantum fields. In this study, we first
note that any variational approximation to the dynamics of a quantum system based on the Dirac action
principle leads to a classical Hamiltonian dynamics for the variational parameters. Since this Hamiltonian is
generically nonlinear and nonintegrable, the dynamics thus generated can be chaotic, in distinction to the exact
quantum evolution. We then restrict our attention to a system of two biquadratically coupled quantum oscil-
lators and study two variational schemes, the leading order large-N ~four canonical variables! and Hartree~six
canonical variables! approximations. The chaos seen in the approximate dynamics is an artifact of the approxi-
mations: this is demonstrated by the fact that its onset occurs on the same characteristic time scale as the
breakdown of the approximations when compared to numerical solutions of the time-dependent Schro¨dinger
equation.@S1063-651X~98!04301-3#

PACS number~s!: 05.45.1b, 03.65.Sq, 02.30.Wd
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I. INTRODUCTION

There are many situations in quantum mechanics and
theory where one hopes that one dynamical degree of f
dom can be considered ‘‘classical’’ or ‘‘semiclassical.’’ I
the dynamics of the early Universe, one usually imagin
that gravitational energy can be transferred to particle p
duction, with the gravitational field being treated semiclas
cally; i.e., the quantum matter fields evolve in a backgrou
‘‘classical’’ gravitational field, the dynamics of which is i
turn determined from the expectation value of the ene
momentum tensor of the quantum field. Similarly in pa
production from strong electric fields, one attempts to
scribe the background electric field ‘‘classically’’ and sol
for the dynamics of the quantum degrees of freedom in
background field. The time dependence of the electric fiel
governed by a Maxwell equation in which the right hand s
is the average value of the current of the produced pairs
this sort of approximation of a quantum system coupled w
a semiclassical degree of freedom such as a coherent ele
or gravitational field, theapproximatedynamics of the quan
tum system can become chaotic. This was first describe
us, and termed ‘‘semiquantum chaos’’@1,2#. A closely re-
lated result having the same cause is ‘‘semiquantal cha
@3#, which occurs in the time-dependent Gaussian appr
mation for the dynamics of quantum systems. The existe
of chaos in the general case of dynamical variational
proaches was noted by Caurieret al. @4# who also argued tha
the onset of chaos signaled the breakdown of the approx
tion scheme.

What happens in these dynamical approximations is
the time evolution of the parameters governing the shap
the quantum mechanical wave function~or functional! be-
comes sensitive to the initial conditions. We will first prese
an argument as to why this behavior can occur inany varia-
tional approximation to the quantum dynamics~e.g., time-
dependent Hartree approximation!. Next we will focus on
571063-651X/98/57~2!/1489~10!/$15.00
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exactly the same model system treated in Refs.@1,2#,
namely, a system of two coupled oscillators described by
Lagrangian

L5 1
2 Ȧ21 1

2 ẋ22 1
2 ~m21e2A2!x2. ~1.1!

This system of two nonlinearly coupled oscillators aro
from studying the problem of pair production of charg
pions in a strong external electric field@5# ~quantum fluctua-
tions of the electric field were ignored!. In momentum space
the individual modes of the pion field displayed chaotic b
havior. The two-oscillator problem results from ignoring a
but thek50 mode for the quantum field. In the Lagrangia
~1.1!, theA oscillator represents the time-dependent elec
magnetic field and thex oscillator, thek50 mode of the
charged pion field.

Treating the electromagnetic (A) field classically is the
standard first term in a large-N expansion@6# and is related
to the classic problem treated first by Schwinger@7# on pair
production from external fields. Because such semiclass
methods are often used in initial value problems in quant
field theory, we hope to understand the origin of the chaos
considering a simple quantum mechanical model. To t
must be added the important point that while accurate
merical solutions to the quantum mechanical problem
available to test the validity of approximations, such a luxu
is not available in field theory.

The semiclassical calculation is equivalent to a Gauss
variational approximation to the field theory~see Ref.@8# for
more details and an explanation of dissipation and deco
ence in this approximation!. As shown later, all variationa
approximations to quantum dynamics lead to class
Hamiltonian dynamics for the variational parameters~the
Gaussian approximation is a special case!, a result due origi-
nally to Kan@9#. Since the dynamics is generically nonlinea
it can be chaotic.
1489 © 1998 The American Physical Society
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1490 57COOPER, DAWSON, HABIB, AND RYNE
We will consider two variational approximations th
make two different assumptions about the fluctuations of
A oscillator. The first approximation~leading order largeN)
is the assumption that we can ignoreall quantum fluctuations
of the A oscillator ~the quantum mechanical version of th
electromagnetic field!. This is equivalent to assuming

^A2x&5^A&2^x&. ~1.2!

The Hartree approximation includes only Gaussian fluct
tions of both quantum oscillators. This implies a factoriz
tion of the expectation values as

^A2x&5^A2&^x&. ~1.3!

Both of these approximations include only Gaussian fluct
tions and are dynamically equivalent to the correspond
classical Liouville equation when only Gaussian fluctuatio
are allowed, with a particular initial condition implementin
the uncertainty relation. Consequently, the same chaos
cussed above will also be found in the classical theory. T
aspect of the Gaussian approximation we will discuss e
where@10#.

Our numerical results show that in the Hartree appro
mation, the onset of chaos, as a function of parameters o
Hamiltonian, is marginally delayed as compared to the lar
N ~semiclassical! approximation. We find that both approx
mations diverge from the exact numerical simulation of
Schrödinger equation at approximately the same time. Af
that time, the Hartree approximation qualitatively tracks
general features of the exact simulation better than the la
N approximation. By direct comparison with the exact n
merical solution we also find that chaos in the variatio
approximations occurs roughly on the same time scale
when these approximations diverge from the exact numer
solution. As is known on general grounds@11#, expectation
values of the full quantum system~which are the variationa
parameters of the classical Hamiltonian dynamics! are insen-
sitive to initial conditions: our results are completely cons
tent with this fact. Our interpretation of the above results
in accord with that of Refs.@4,12# who have argued that th
chaos seen in the approximate dynamics is not a fundame
feature of the full quantum dynamics but simply reflects
breakdown of the approximation scheme. It was further
gued in Ref. @12# that the approximations are unreliab
when either the classical equations are already chaoti
when the approximate dynamics is chaotic. To test the s
ond part of this statement we explored nonchaotic param
regimes for the approximate dynamics~but not too far from
the onset of chaos! and found essentially no improvement
the agreement between the exact quantum and approxi
calculations. Thus the existence of chaos is insufficien
assess the accuracy of the approximations: apparently
breakdown time~in terms of natural time scales! is the same
whether chaos is present or not.

It is strong nonlinearity rather than just chaotic dynam
that leads to the breakdown of the approximations. This
hardly surprising: the Gaussian approximations are equ
lent to truncating a cumulant expansion at second orde
the exact dynamics is strongly nonlinear, higher order cum
lants are generated and a second order truncation qu
e
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becomes invalid. For chaotic systems, Ref.@12# provides a
simple analytic argument, but the statement is true more g
erally.

These results might seem to put very strong constraints
dynamical mean field approximations in quantum fie
theory, especially at strong coupling. However, the fie
theoretic analog to the above problem has a very large~for-
mally infinite! number of degrees of freedom. For examp
in the field theoretic case, Eq.~1.1! is a radical truncation of
the full Lagrangian

L5u~]m2 ieAm!fu22
1

4
~]mAn2]nAm!22m2f†f.

~1.4!

In the leading order large-N approximation,A is still treated
classically but it is now coupled to a very large number
fluctuating degrees of freedom. Before definitive stateme
regarding the accuracy of mean field approximations can
made, two issues have to be clarified. The first has to do w
the fact that even though the individual trajectories of t
Fourier modesfk may be chaotic and far from the exa
solution, what really matters is the summed contributi
~i.e., the statistics of the distribution of trajectories! and this
may have a much more benign character. The second po
related to the onset of chaos as the number of degree
freedom is varied. The importance of this question was no
by Ford @13# but it has not been studied in any detail in th
literature. Thus, it is still an open question whether chaos
the mean field approximation in field theory is as serious
obstruction as suggested by the study of lower dimensio
systems.

The rest of the paper is set out as follows. First~Sec. II!
we prove the general result that all variational approxim
tions lead to a Hamiltonian dynamics for the variational p
rameters. Then, in Sec. III we explicitly discuss the Ham
tonian dynamics for the two oscillator problem, both in t
large-N and Hartree approximations. In Sec. IV we briefl
describe our numerical approach to the exact solution of
two coupled oscillator problem. We then compare numeri
simulations of the two variational approximations with th
exact solution of the Schro¨dinger equation. Finally, in Sec
V, we state our conclusions and discuss the implications
our results.

II. THE TIME-DEPENDENT VARIATIONAL PRINCIPLE

The Schro¨dinger equation can be reduced to a system
ordinary differential equations for some variational para
eters by constraining the wave function to be of a particu
form. The fact that any variational calculation of the wa
function will lead to a Hamiltonian dynamics for the varia
tional parameters was first noted by Kan@9#. Here we pro-
vide an alternative, compact derivation.

The starting point for a variational calculation is Dirac
action principle@14#, which can also be used to derive th
Schrödinger equation as shown below. We begin by defin
the action

S5E
t1

t2
dtK CU i ]

]t
2HUC L /^CuC&. ~2.1!
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57 1491CHAOS IN TIME-DEPENDENT VARIATIONAL . . .
The time-dependent Schro¨dinger equation

S i
]

]t
2H D uC&50 ~2.2!

then follows from the variational principledS50 along with
the boundary conditionsduC(t1)&50; duC(t2)&50.

Minimizing the action~2.1! on a restricted variational ba
sis for the wave function

C→Cv„yi~ t !…, E dtCv* Cv51 ~2.3!

leads to an effective action functional defined on the va
tional parametersyi(t):

G@yi~ t !#5E dtK CvU i ]

]t
2HUCvL , ~2.4!

where the wave function is usually given in the coordin
representation. Extremization of the effective action
dG@yi #50 yields the dynamical equations obeyed by t
variational parameters.

In order to show that any variational solution leads to
symplectic Hamiltonian dynamics for the variational para
eters~the case of Gaussians was considered in Ref.@15#!, we
consider general trial wave functions that are completely
termined byn time-dependent functions of the formyi(t),
i 51, . . . ,n, and written formally as

C~x,t !5C„x;yi~ t !…. ~2.5!

Here we choose for simplicity a one-dimensional Sch¨-
dinger equation with arbitrary potential. Note that the ent
time dependence of the wave functions is contained in
variational functionsyi(t). The Dirac form of the action is
then given by

G@y#5E dtE
2`

1`

dxC* „x;y~ t !…H i
]

]t
2HJ C„x;y~ t !…

5E dt L~y,ẏ!, ~2.6!

with H given by

H52
1

2

d2

dx2 1V~x!. ~2.7!

Given the above parametric form of the wave functio
L(y,ẏ) is alwaysgiven by a function of the form

L~y,ẏ!5(
i 51

n

p i~y!ẏi2h~y!, ~2.8!

where

p i~y!5E
2`

1`

dx
i

2H C* ~x;y!
]

]yi
C~x;y!

2C~x;y!
]

]yi
C* ~x;y!J ~2.9!
-

e

-

-

e
e

,

and

h~y!5E
2`

1`

dxC* ~x;y!HC~x;y!. ~2.10!

Minimization of the action, Eq.~2.6!, leads to Lagrange’s
equations:

d

dt

]L

] ẏi

2
]L

]yi
50 for i 51,n. ~2.11!

The equations of motion foryi can be found easily using th
specific Lagrangian defined in Eq.~2.8!,

(
j 51

n

Mi j ~y!ẏ j5
]h~y!

]yi
, ~2.12!

whereMi j (y) is an antisymmetric matrix given by

Mi j ~y!5
]p i

]yj
2

]p j

]yi
52M ji ~y!. ~2.13!

If the inverse ofMi j exists, the equations of motion can b
put in a symplectic form:

ẏi5(
j 51

N

Mi j
21~y!

]h~y!

]yj
. ~2.14!

SinceMi j
21 is also antisymmetric,h(y) is a conserved quan

tity:

dh~y!

dt
5(

i

]h

]yi
ẏi5(

i j

]h

]yi
M i j

21 ]h

]yj
50. ~2.15!

Following Das@16#, we now introduce Poisson brackets b

$A,B%5(
i j

]A~y!

]yi
M i j

21 ]B~y!

]yj
. ~2.16!

So, for example,

$yi ,yj%5Mi j
21 . ~2.17!

The equations of motion can now be written in terms of the
Poisson brackets:

ẏi5$yi ,h~y!%5(
j

M i j
21 ]h

]yj
5(

j
$yi ,yj%

]h

]yj
.

~2.18!

The antisymmetry of the Poisson brackets is explicit in th
definition ~2.17!. However, they must also obey Jacob
identity:

ˆyi ,$yj ,yk%‰1ˆyj ,$yk ,yi%‰1ˆyk ,$yi ,yj%‰50,
~2.19!

which is satisfied ifMi j obeys Bianchi’s identity:

]Mi j

]yk
1

]Mki

]yj
1

]M jk

]yi
50. ~2.20!
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1492 57COOPER, DAWSON, HABIB, AND RYNE
But Bianchi’s identity is always satisfied forMi j of the form

Mi j 5] ip j2] jp i . ~2.21!

Thus our definition of the Poisson brackets satisfies Jaco
identity, and the set of classical equations of motion~2.18!
are symplectic.

III. HARTREE APPROXIMATION
AND THE LARGE- N LIMIT

We have shown that a time-dependent variational
proximation always leads to a Hamiltonian dynamical s
tem for the variational parameters. Since such a system
generically nonlinear, there is a strong likelihood of chaos
the phase space of these Hamiltonian parameters. In this
tion we derive two different approximations for the coupl
oscillator problem. The first keeps Gaussian correlati
~Hartree approximation! for both oscillators, while the sec
ond ~large-N approximation! ignores fluctuations in theA
oscillator. The second approximation has been derived
viously from a path integral approach@2# by makingN cop-
ies of thex oscillator and then taking the largeN limit.

The model Hamiltonian that generalizes the two-oscilla
problem to anN11 oscillator system is

H5
1

2
pA

21(
i 51

N
1

2
pi

21
1

2
~m21e2A2!(

i 51

N

xi
2 , ~3.1!

where we have introduced anN11 component oscillator
xm ; m50,1, . . . ,N with x05A and the otherN oscillators
labeled by the roman indicesi 51,2, . . . ,N. We show below
that at largeN, a Gaussian ansatz for the wave functi
reproduces the exact large-N limit of the quantum mechani
cal system. AtN51, the Gaussian approximation reduces
the well known Hartree approximation.

The operator equations of motion following from th
Hamiltonian~3.1! are

ẍi1~m21e2A2!xi50, ~3.2!

Ä1e2(
i

xi
2A50. ~3.3!

Taking expectation values of these two equations we ob

^ẍi&1m2^xi&1e2^A2xi&50, ~3.4!

^Ä&1e2^x2A&50. ~3.5!

It was shown in Ref.@2# that in the large-N limit, fluctuations
of theA oscillator are suppressed by 1/N and the exact equa
tions ~3.4! and ~3.5! are approximated by

^ ẍi&1m2^xi&1e2^A&2^xi&50, ~3.6!

^Ä&1e2^x2&^A&50. ~3.7!

The semiclassical field̂A& now has a time-dependent ma
given by the quantum expectation value^x2&. The quantum
oscillatorxi has a mass with time dependence controlled
^A&. ~This system was discussed in detail in Refs.@1,2#.! It is
i’s
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also perfectly clear that the large-N limit is equivalent to
treating theA oscillator classically~i.e., ignoring the quan-
tum fluctuations about the mean value ofA).

The equations governinĝA& and ^x2&5G when ^x&50
were shown to be derivable@1# from the effective classica
Hamiltonian:

Heff5
1

2
pA

212\PG
2 G1

\

8G
1

\

2
~m21e2A2!G. ~3.8!

We will show below that using a Gaussian trial wave fun
tion in Dirac’s variational principle and taking the large-N
limit will lead to the same effective Hamiltonian~3.8! for the
evolution of the expectation values. However, if instead
taking the large-N limit, we setN51, and a trial wave func-
tion that is a product of Gaussians inA and x, then the
equations for the expectation values become

^ẍi&1m2^xi&1e2^A2&^xi&50, ~3.9!

^Ä&1e2^x2&^A&50. ~3.10!

Here ^A2&5^A&21D, andD is the Gaussian quantum fluc
tuation of theA oscillator ~which also is the width of theA
wave function!. In this case we will also get an effectiv
Hamiltonian description of the dynamics, but with two mo
parameters,D andPD . We will compare these two approxi
mate Hamiltonian dynamics with the numerical simulation
the exact dynamics.

Our choice for the trial wave function is

Cv~xm!5NexpF2
1

\
@x2q~ t !#m@x2q~ t !#nS G21

4
2 iP D

mn

1
i

\
pm~ t !@x2q~ t !#mG , ~3.11!

where the normalization constant is given by

N5expF2
1

4
Tr ln~2p\G!G .

The variational parameters are related to various expecta
values taken with respect to the variational wave funct
Cv :

qi~ t !5^Cvuxi uCv&,

pi~ t !52 K CvU i\ ]

]xi
UCvL ,

~3.12!

Gi j ~ t !1qi~ t !qj~ t !5^Cvuxixj uCv&,

2qi~ t !pj~ t !14P ik~ t !Gk j~ t !5^Cvuxipj1pjxi uCv&.

The equations for these expectation values are obtaine
varying the effective action, or equivalently from Hamilton
equations using the effective Hamiltonian.

The effective action for the variational paramete
p,q,G,P is
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G5E dtH (
i 51

N

pi q̇i1pAȦ2\Tr@ṖG#2HeffJ ,

~3.13!

where Tr@AB#5AmnBnm and the effective Hamiltonian,

Heff5^CvuHuCv&

5(
i 51

N pi
2

2
1

pA
2

2
1\TrF1

8
G21G12\Tr@PGP#

1Fm2

2
1

e2

2
~A21G00!G(

i 51

N

~qi
21Gii !. ~3.14!

This last equation gives the effective Hamiltonian for t
dynamics of theN11 oscillators in the Hartree approxima
tion. For simplicity ~as was done in Ref.@1#!, we now spe-
cialize to the caseq(t)5p(t)50. In this caseG andP are
diagonal~in general, they are also diagonal to leading ord
in the 1/N expansion!. Since we haveN replicas of thex
oscillator, the diagonal condition simply means thatGi j (t)
5G(t)d i j . Inserting this condition in Eq.~3.14! we find

Heff
~0!5

1

2
pA

212\~NPG
2 G1PD

2 D !1
\

8S N

G
1

1

D D
1

\N

2
@m21e2~A21\D !#G. ~3.15!

SettingN51 in Eq.~3.15!, we find the effective Hamiltonian
that controls the Hartree approximation:

FIG. 1. Domain of integrability for the large-N approximation in
energy and coupling constant space. The phase space was sa
with ten initial conditions at each (e,E) point and trajectories as
ymptoting to positive Lyapunov exponents were searched for.
fixed e, the region above any point denoted by the top square in
figure corresponds to chaotic dynamics, i.e., in the set of trajecto
sampled there was at least one with asymptotically posi
Lyapunov exponent. The region below the bottom square co
sponds to integrable dynamics.
r

HH
~0!5

1

2
pA

212\~PG
2 G1PD

2 D !1
\

8S 1

G
1

1

D D
1

\

2
@m21e2~A21\D !#G, ~3.16!

whereG5G11 andD5G00.
Next we take the large-N limit of Eq. ~3.15! using the

same scaling argument as in determing the large-N limit of
the path integral formulation@2#: we let A→ANÃ and
pA→ p̃A ~leaving invarianteA5 ẽÃ). Dividing the effective
Hamiltonian byN and keeping the leading term, we find th
the large-N Gaussian effective Hamiltonian is exactly th
same as the effective Hamiltonian found from the lead
order largeN action@2#. The rescaled effective Hamiltonia
reads

H̃eff
~0!5Heff

~0!/N

5
1

2
pA

212\PG
2 G1

\

8G
1

\

2
~m21e2A2!G,

~3.17!

which is in complete agreement with Eq.~3.8!. ~Tildes de-
noting the rescaled variables have been suppressed ab!
At N51, the Hartree approximation has two more var
tional parametersD and PD compared to the large-N ap-
proximation. These are related to the real and imagin
parts of the width of the wave function for theA oscillator
and are obviously not incorporated in the large-N approxi-
mation. Because of the extra degrees of freedom incor
rated in it, one might anticipate Hartree to be the better of
two approximations.

In the Hartree approximation, the Hamilton’s equatio
for the expectation values are

Ȧ5pA, ṗA52e2\AG, ~3.18!

pled

t
e

es
e
e-

FIG. 2. A typical computation of the maximal Lyapunov exp
nents for the largeN ~upper curve! and Hartree~lower curve! ap-
proximations. Parameter values for this run weree51 andE55.
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1494 57COOPER, DAWSON, HABIB, AND RYNE
Ġ54\PGG, Ḋ54\PDD, ~3.19!

ṖG5
\

8G2 22\PG
2 2

1

2
m22

1

2
e2\~A21\D !,

~3.20!

ṖD5
\

8D2 22\PD
2 2

1

2
e2\2G. ~3.21!

In the leading order large-N approximation,D50, and there
is no equation forPD .

For numerical work it is sometimes convenient to swit
to a set of coordinates where the kinetic terms have the u
canonical form. DefiningrG

2 5G and rD
2 5D, the new

Hamiltonian is

HH
~0!5

1

2
pA

21
1

2
pG

2 1
1

2
pD

2 1
\

8S 1

rG
2 1

1

rD
2 D

1
\

2
@m21e2~A21\rD

2 !#rG
2 , ~3.22!

with the resulting equations of motion

Ȧ5pA , ṗA52e2\ArG
2 , ~3.23!

ṙG5pG , ṙD5pD , ~3.24!

ṗG5
\

4rG
3 2@m21e2\~A21\rD

2 !#, ~3.25!

ṗD5
\

4rD
3 2e2\2rDrG

2 . ~3.26!

Again the equations for leading order largeN are obtained
by settingrD50 and droppingpD . The advantage of this
form is the ease in writing symplectic integrators and a
simplifying the form of the matrices needed to compute
Lyapunov exponents.

FIG. 3. A Poincare´ section in theA, Ȧ plane fore51 andE
50.8 for the large-N approximation. The phase space was samp
by 256 different trajectories.
al

o
e

The above equations can now be solved numerica
Chaos~in the sense of nonzero Lyapunov exponents! exists
for large enough values ofe2 and for energy sufficiently
above the ground-state energy.

IV. SEMIQUANTUM „GAUSSIAN… CHAOS

A. Numerical methods

In this section we display evidence that both the largeN
and Hartree approximations are chaotic for appropriate
ues of the energyE and the couplinge. ~In Ref. @1#, the
large-N approximation alone was shown to be chaotic.! The
dynamics of test trajectories in the above approximatio
was studied using a fourth order symplectic integrator.~This
integrator was implemented using the second set of varia
defined at the end of the last section.! Chaos was character
ized quantitatively by measuring the Lyapunov exponent
different initial conditions using standard techniques@17#.

In order to check whether the chaos seen in the appr
mation is of some relevance to the full quantum problem
numerical solution of the corresponding time-depend
Schrödinger equation is required. This was accomplished
using second and fourth order unitary, split-operator, spec
solvers that we have recently implemented on a large par
computer@18#. By using large grids~up to 409634096) suf-
ficient resolution is achieved to accurately evolve the wa
function over times long enough to meaningfully compa
with results from the variational approximations.

The phase space of the large-N and Hartree approxima
tions was characterized using Poincare´ sections. At relatively
low energies and modest values of the coupling constane,
both the approximations led to integrable dynamics. Ho
ever, increasing either the energy or the coupling cons
quickly led to nonintegrability. While not carrying out a
exhaustive analysis, we did isolate parametric regions wh
the chaos was relatively soft~the area of stochastic orbit
was small compared to the area occupied by regular orb!
and regions where the dynamics was predominantly chao

d

FIG. 4. A Poincare´ section in theG, PG plane in the large-N
approximation for the same set of parameters as Fig. 3.
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FIG. 5. Evolution of^A& for e50.3 andE51. This is within the parameter range for nonchaotic evolution within the approximat
Both approximations break away from the exact evolution att;5 but stay in phase at later times. The Hartree approximation (H) does better
in tracking both phase and amplitude. The curve with the smallest average amplitude corresponds to the exact quantum evolutionQ), and
the one with the largest average amplitude corresponds to the large-N expansion (N).
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We also ran a large set of initial conditions to sample
regions in coupling constant–energy space where the
proximations were regular. This was accomplished by imp
menting a parallel code to compute the Lyapunov expone
for a large set of independent trajectories.

B. Numerical results

There are two separate but related questions concer
the variational approximations. The first question relates
how well they track the exact numerical calculations. W
find that the approximations break away from the exact c
culation on a short time scale independent of whether t
are chaotic or not. However, qualitative agreement with
numerical results is much better in the nonchaotic case.
second question refers to the stability of the approxim
solutions as well as the exact solution. In the chaotic reg
of the approximations, the approximate evolution is sen
tively dependent on initial conditions whereas the exact e
lution is not. After a finite time, two approximate evolution
starting from almost identical initial conditions become co
pletely different in the chaotic case and no longer bear
phase relationship among themselves or to the exact solu
This is in contrast with the behavior in the integrable cas

The addition of variational parameters has two effects
qualitatively improves the long time behavior in both t
regular and chaotic regimes even though the break time f
the exact behavior is not affected. Secondly, there is so
evidence that the onset of chaos is delayed as more pa
eters are added and that the value of the maximum Lyapu
exponent is also decreased. However, an exhaustive s
would require a systematic method of adding variational
e
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rameters for the trial wave functions and this we leave to
future.

In Fig. 1 the approximate region of regularity for th
large-N approximation is displayed. Each (e,E) point was
sampled by ten trajectories, with the Lyapunov exponent c

FIG. 6. Evolution of^A& for e51 andE55. The approximate
evolutions are now chaotic. They break away from the quant
evolution at timet;2 ~denoted by the point 1 in the figure! and
break away from each other at point 2 (t;4). In this case the
evolutions quickly dephase from each other and from the quan
evolution.
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culated for each. Within the uncertainties of our sampl
scheme the integrable and nonintegrable regions canno
sharply distinguished: the top set of points denotes at l
one trajectory having an asymptotically positive Lyapun
exponent while below the bottom set of points no such
jectory was ever found. The true boundary should be roug
in the middle of these two curves. The results for the Hart
approximation are very similar and slightly above the in
grability curve for largeN but the difference is of order th

FIG. 7. Evolution ofG for the same parameters as Fig. 6. T
break from the quantum evolution occurs att;1 ~denoted by the
point 1 in the figure! and the approximations break away from ea
other at point 2 (t;2). The quantum evolution is much smooth
than the approximations: Though the Hartree approximation is
quantitatively correct, it does not have the big excursions shown
the large-N approximation.

FIG. 8. Evolution of ^A& for the same parameters as Fig.
Points 1 and 2 mark the breaking away of two nearby trajectorie
the Hartree and large-N approximations~one of which is the solid
line!. After this time, the trajectories rapidly dephase from ea
other.
g
be
st

-
ly
e
-

uncertainty band. Whether there is a general~monotonic!
tendency for this to happen as the number of degrees
freedom is further increased is an interesting specula
which needs to be explored further.

The Lyapunov exponents for the two approximatio
were computed in the chaotic parameter regime. For all ca
we studied the maximal exponent in the Hartree approxim
tion was less than the corresponding exponent in the largN
approximation. A typical example of these results is given
Fig. 2.

Poincare´ sections are another way to explore the doma
of integrability for the two approximations. For the ‘‘bound

ot
y

in

h

FIG. 9. Evolution ofG for the same parameters as Fig. 6. T
trajectory denoted byQ is the quantum evolution~recognized also
by being the smoothest!. Points 1 and 2 mark the breaking away
two nearby trajectories in the Hartree and large-N approximations.

FIG. 10. Evolution ofD for the same parameters as Fig. 6. T
quantum evolution and the Hartree approximation deviate fr
each other att;1 and the two nearby trajectories of the Hartr
approximation break from each other att;15.
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ary’’ regions of Fig. 1, the phase space was largely mix
with stochastic regions coexisting with regular regions. W
checked for random values of the parameters that the re
below this boundary was regular. Above, it was dominan
chaotic. It was difficult to use Poincare´ sections for the Har-
tree approximation because more degrees of freedom m
running much longer to get acceptable statistics. We did
checks for a few parameter values and found results con
tent with Fig. 1 including the fact that chaos occurred
larger values of the parameters. For example, while
large-N approximation had appreciably chaotic regions aE
50.8, e50.7 the Hartree approximation was completely
tegrable for those values of the parameters.~Note that the
energyE is different for the largeN and Hartree approxima
tions sinceD and PD contribute in the Hartree approxima
tion, but not in largeN.! For the parameter values,e51 and
E50.8 we show two Poincare´ sections in Figs. 3 and 4
~largeN), which are typical for values of the parameters ne
the boundaries of Fig. 1.

In order to assess the relevance of the chaos seen in
approximations we have compared the approximate ev
tions with exact numerical solutions of the Schro¨dinger
equation with Gaussian initial data. The exact evolut
shows no hint of the sensitivity to initial conditions exhibite
by the approximate dynamics. As illustrated in Figs. 5,
and 7, in both the regular and chaotic regimes the appr
mations quickly deviate from the exact results on a ti
scale of order unity, this signaling the breakdown of t
Gaussian approximation.

The Lyapunov time sets a maximum time for which t
approximations can agree with the exact quantum dynam
In fact, consistent with this statement we observe that
time of breakdown of the approximations and the Lyapun
time are of the same order. However, this should not l
one to conclude that the accuracy dramatically impro
when the approximate dynamics is integrable. Indeed, e
in integrable parameter regimes, the breakdown time can
main of order unity~Fig. 5!. Therefore, for coupling con
stants of order unity, these approximations tend to be ra
poor. This is because significant non-Gaussian struc
forms in the exact wave functions relatively rapidly.

The chaos inherent in the approximations is demonstra
in Figs. 8, 9, and 10, for the evolution of^A&, G, andD. In
these figures we show two trajectories for each of the
proximations, one corresponding to an initialG50.5 and the
other to G50.5001 ~all other parameters held fixed!. The
deviations of these two curves are consistent with the ca
lated Lyapunov exponent~which is of order unity! and an
initial deviation of order 1024.

The approximations discussed here break down when
there is significant non-Gaussian structure in the actual w
function. As long as the coupling is of order unity this ha
pens relatively rapidly. Examples of the numerically eva
ated probability densities inA are shown in Figs. 11 and 1
for values of the parameters that correspond to integrable
nonintegrable evolutions.

V. CONCLUSIONS

The central results of this investigation may be encap
lated succinctly: all time-dependent variational approxim
,
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tions based on a Dirac approach are Hamiltonian and gen
cally nonlinear. Therefore all such approximations can
chaotic. Since exponential divergence of expectation val
in time is ruled out in full quantum mechanics, the Lyapun
time associated with the approximate evolution sets a t
scale beyond which the approximation breaks down.
have investigated this last point in two particular examp
~large N and Hartree for a two-dimensional potential!, find
both to be chaotic, and by comparison against numeric
obtained solutions, show explicitly that the approximatio
break down on the Lyapunov time scale. We also show t
even in nonchaotic regimes, the approximations break do
very quickly. Thus the mere absence of chaos is not an in
cator of the accuracy of these approximations.

We would also like to point out that suggestions ha
been made in the literature that semiquantum chaos ma
fact be a real effect~e.g., Ref.@3# and rather more strongly in

FIG. 11. The initial and final (t5100) probability densities for
A with e50.3 andE55 ~integrable case!.

FIG. 12. Same as Fig. 11 withe51, E55 ~nonintegrable case!.
In this case the final time,t540.
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Ref. @19#!. However, these claims were not backed up
careful comparisons with exact calculations. The detailed
sults reported here, along with the fact that Gaussian
proximations are dynamically completely classical@10#, im-
ply exactly the opposite conclusion~in substantial agreemen
with the arguments of Refs.@4,12#!.

The fact that in the chaotic regime, the approximati
signals its own breakdown has an interesting physical co
quence: if the 1/N approximation is in fact sensible then
breakdown at leading order must imply that the next-
leading terms are becoming large on the same time sc
Since, in field theory the leading order approximation do
not incorporate collisions, what this implies is that the co
sional time scale can be estimated from the breakdown of
leading order result itself, without actually having to com
pute the next-to-leading order contribution. Given the co
plexity of higher order calculations this feature may be e
tremely useful. This and other aspects of the field theor
y
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problem are now under investigation.
One way of incorporating higher order correlation fun

tions in dynamical approximations is to consider trial wa
functions of the form Gaussian times polynomials. This c
be put in correspondence with the large-N expansion, which
can be shown to lead to the same structure as higher-o
corrections in 1/N are added. An interesting question
whether opening up the possibility of including higher ord
correlations in this way will improve the long time behavi
of the variational approach.
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